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Abstract Pharmacovigilance serves to detect previously unrecognised adverse events

associated with the use of medicines. The simplest method for detecting signals
of such events is crude inspection of lists of spontaneously reported drug-event
combinations. Quantitative and automated numerator-based methods such as
Bayesian data mining can supplement or supplant these methods. The theoretical
basis and limitations of these methods should be understood by drug safety pro-
fessionals, and automated methods should not be automatically accepted. Pub-
lished evaluations of these techniques are mainly limited to large regulatory
databases, and performance characteristics may differ in smaller safety databases
of drug developers. Head-to-head comparisons of the major techniques have not
been published. Regardless of previous statistical training, pharmacovigilance
practitioners should understand how these methods work. The mathematical basis
of these techniques should not obscure the numerous confounders and biases
inherent in the data. This article seeks to make automated signal detection meth-
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ods transparent to drug safety professionals of various backgrounds. This is ac-
complished by first providing a brief overview of the evolution of signal detection
followed by a series of sections devoted to the methods with the greatest utilisa-
tion and evidentiary support: proportional reporting rations, the Bayesian Confi-
dence Propagation Neural Network and empirical Bayes screening. Sophisticated
yet intuitive explanations are provided for each method, supported by figures in

which the underlying statistical concepts are explored. Finally the strengths, lim-

itations, pitfalls and outstanding unresolved issues are discussed. Pharmacovigil-
ance specialists should not be intimidated by the mathematics. Understanding the
theoretical basis of these methods should enhance the effective assessment and

possible implementation of these techniques by drug safety professionals.

The principal objective of pharmacovigilance is
the detection of adverse events related to the use of
medicines that are unknown or novel in terms of
their clinical nature, severity or frequency. This
entails the search for preliminary signals of such
events. In the context of spontaneous reports the
WHO defines a signal as ‘reported information on
a possible causal relationship between an adverse
event and a drug, the relationship being unknown
or incompletely documented previously. Usually
more than a single report is required to detect a
signal, depending on the seriousness of the event
and the quality of the information’.l'l A single,
well documented report with a positive rechallenge
could represent a signal, although replication of
findings in a series of reports is more often re-
quired. A signal does not establish that drug and
event are causally related but suggests that further
investigation may be warranted to clarify the ob-
served association. Since other sources of data can
supply signals, a more general definition is ‘an
alert from any available source that a drug may be
associated with a previously unrecognised hazard
or that a known hazard may be quantitatively
(more frequent) or qualitatively (e.g. more serious)
different from existing expectations’.[?! The objec-
tive of this article is to provide a sophisticated yet
intuitive comparison of commonly used signalling
methods for postmarketing drug safety surveil-
lance.
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1. Overview of Signal
Detection Methods

Different signal detection methods have differ-
ent data requirements. Spontaneous reporting sys-
tems constitute the major source of data for this
activity but drug utilisation/sales estimates and/or
observational epidemiological data may be re-
quired according to the method used.[!-3-61 Pre- and
postapproval safety databases have complemen-
tary strengths and limitations for signal detection
and evaluation. Postmarketing safety databases de-
rived from spontaneous reports contain substan-
tially larger volumes of data than premarketing
databases but are uncontrolled, lack exposure data
and are vulnerable to numerous systematic biases
that complicate signal detection and analysis. Ap-
plication of quantitative techniques to such uncon-
trolled and biased data is problematic. Premarket-
ing safety databases include data from well
controlled and defined populations and are amena-
ble to quantitative statistical analysis but the size
of clinical trial databases precludes reliable detec-
tion of rare adverse events, adverse events with
prolonged latencies and risk factors. Using quanti-
tative techniques with larger postmarketing safety
databases could enhance the detection of pre-
viously unrecognised safety issues by objectively
utilising the huge amount of data they typically
contain.

The simplest methods of signal detection in-
volve periodic review of crude frequency data by
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expert human analysts.!!-31 Within-drug and be-
tween-drug crude numerical comparisons of re-
porting frequency or time trends are made. An ex-
ample is the former two threshold signalling
method used by the WHO Programme for Interna-
tional Drug Monitoring. Suspect drug-event com-
binations reported at least twice (level 2) or five
times (level 5) were sent to expert reviewers for
selection of possible signals.!-3->-61 Drawbacks in-
clude the usual limitations and biases of voluntar-
ily reporting systems such as underreporting, lack
of exposure measurements, incomplete data, the
considerable human prejudgement involved and
underutilisation of data, since signals for a given
drug are sought using only data for that drug. Fully
exploiting the information in postmarketing safety
databases with quantitative and automated tech-
niques has received increasing attention from drug
developers and regulatory agencies.[2-3:6-14]
Several statistical methods have previously
been suggested for surveillance activities includ-
ing postmarketing safety surveillance.[!5-2!1] They
can be grouped into two categories: denominator-
dependent methods and numerator-based methods.
The former use some form of exposure estimates
and are mostly designed to detect temporal
changes in reporting rates or frequencies by con-
structing a probability model and corresponding
test statistic to assess the probability that observed
temporal changes reflect random sampling vari-
ability. Most have extremely limited or no support
in the form of actual use or testing with spontane-
ous reports. Examples are cumulative sum (cusum)
techniques, time scans and Poisson methods. For
these techniques tables of critical values are calcu-
lated or the respective test statistic is calculated for
specific situations.l'®21] Observational epidemio-
logical databases have also been used for signal de-
tection. Section 3 briefly discusses these methods.
Numerator-based methods, which are self con-
tained in that they do not require access to external
data sets for exposure estimates, include short
memory schemes, proportional reporting ratios
(PRRs)[15.7:9:101 and Bayesian data mining,[3-6:11-15]
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among which, PRRs and Bayesian data mining are
currently the focus of attention from regulators and
drug developers. Although the underlying models
vary considerably, a common feature of these
methods is an assessment of how much the ob-
served reporting frequency of a given drug-event
combination deviates from that expected, given
statistical independence between drug and event.
They have the greatest evidentiary support from
postmarketing data but still raise many questions
about underlying assumptions, probability models,
validation and generalisability of findings across
databases. Numerous commercial vendors offer
‘off-the-shelf” software to implement automated
signal detection in postmarketing databases. The
method of PRRs has already been incorporated
into the routine surveillance activities of the UK
Medicines Control Agency (MCA).[8! The Uppsala
Monitoring Center (UMC) which has technical op-
erational responsibility for the WHO database in-
corporates one of the Bayesian-based signal detec-
tion strategies known as the Bayesian Confidence
Propagation Neural Network (BCPNN) methodol-
ogy in routine pharmacovigilance activities.®
Other national spontaneous reporting centres and
drug safety research units routinely use various nu-
merator-based methods such as empirical Bayes
screening (EBS), reporting odds ratios (RORs) and
incidence rate ratios (IRRs).[12:22.23] Despite the
increased use and availability of these methods,
most pharmacovigilance professionals may not be
familiar with many of the underlying theoretical
concepts originating in information theory and
mathematical statistics. Readers without prior sta-
tistical training should be able to understand how
these methods work and be able to assess them
critically. After a brief review of denominator-
based and older numerator-based methods, this
article focuses in detail on the three methods of
automated signal detection with the most wide-
spread application, namely PRRs and two Bayes-
ian methods (BCPNN and EBS). The objective is
to provide a technical yet intuitive evaluation of
these methods.
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2. Denominator-Based Methods

2.1 Cumulative Sum

Cusum techniques exploit the fact that positive
and negative deviations around a mean tend to can-
cel (which is why variance involves a squared de-
viation term).l'®-171 Accumulated deviations (cu-
mulative sums) from the mean or control value in
sequential observations would be unlikely to ex-
ceed ‘control limits’ unless a nonrandom process
truly increases the underlying population mean. If
the cusum exceeds a threshold value an alert is de-
tected. The threshold is determined by the average
run length (ARLg) under background incidence K,
the standard deviation ko, and the difference K;—K;.
where K; is an increased incidence level and
K; > Ky is considered to be the alert or rejection
level, and K, is the reference level and is usually
taken as the mean of Ky and K that is, Ko < K; <
K;.The ARL is the average time until the threshold
is exceeded and an alert is detected. Cusum tech-
niques have been applied to surveillance of adverse
reactions to vaccines, birth defects and other rare
diseases but have limited evidentiary support in
pharmacovigilance. A closely related sequential
sampling technique known as Wald’s sequential
probability ratio test has demonstrated potential
value in the early detection of signals during post-
marketing surveillance.[>4]

2.2 Time Scan

Time scan methods compare sales-adjusted ad-
verse event rates between current and historical
comparison reporting periods.l'%!71 If the rate in
the current reporting interval exceeds that from the
historical period an assessment is made of how
likely this is due to binomial sampling variation
(approximate Poisson process with high sales vol-
ume). The three parameters are sales volume, the
population probability of a given adverse event per
unit sales and the number of reported adverse
events. Given the current reporting period (i = C),
the historical comparator period (i = H), the num-
ber of reports of adverse events in a given time
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period x;, the sales volume per reporting period s;,
and the population probability per unit sales p;, X
follows a Poisson distribution (figure 1) with pa-
rameter s;p;. With large sales this approximates a
binomial distribution with (equation 1):

P(Xc=x|t) =[tl((t—x)!Ix )] R (1-R)' *

x=0,1..t

with (equation 2):

R:SC /(SC +SH)

as the sales ratio, and (equation 3):

t=xg +Xx

This method has been used by regulatory au-
thorities, such as the US FDA, to look for signals
of increased frequency of serious labelled adverse
events. The FDA amended its regulations on expe-
dited reporting to revoke the requirement for in-
creased frequency reports based on its determina-
tion that it did not result in the timely identification
of safety problems requiring regulatory action.[?3]
Multiple same-region report bias may contribute to
the high false-positive rate with standard serial in-
creased frequency analysis.[20]

2.3 Poisson Method

The Poisson method is a straightforward appli-
cation of statistical theory to postmarketing safety
data with somewhat more support than the above
referenced methods.2%-21.271 While cited as a statis-
tical approach to signal detection, it is more accu-
rately considered a method for evaluating an exist-
ing signal.[?%] It requires spontaneous adverse
event reports as well as ‘external’ data in the form
of estimated background incidence of the adverse
event and level of drug utilisation.

With estimated background incidence of an ad-
verse event and the number of patients treated, rare
coincidences of drug and event are modelled by a
Poisson distribution with the probability of at

Drug Safety 2003; 26 (3)
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The familiar binomial distribution is given by the following expression:

P(x) = [nl/(nl(x-n)!)Jp*(1-p)"*

Where P(x) is probability of x success in n trials, n is number of trials, and p is probability of success on a single trial.

There is an important connection between the binomial distribution and the Poisson distribution. Consider a process where the

probability of the success in any one trial is extremely small, the average probability of success in n trials given by p = np, and
with an extremely large number of trials. Substituting p = p/n in the binomial formula gives

P() = [(n), /> JI/xIE(1- (/)]

As n— for fixed x and y, the terms in n in the first bracket approach 1 and the terms in the last square bracket —e#
since (1-p/n)"—e as n—eo. Therefore:

lim P(x) = eMp¥/x!
n—>eo

This equation is used in application to approximate the binomial distribution by the Poisson distribution when the success
probability p is small and n is large. The important features of the Poisson process are that it is a discrete, one parameter (u)
distribution with mean and variance equal to p.

Another important property of the Poisson distribution is that it forms a conjugate pair with the gamma distribution. For now this
means that the Poisson distribution can be used with another distribution known as the gamma distribution to model uncertainty
in the parameter (u) of a Poisson process and the new distribution will also have the parametric form of a gamma distribution.

mean.

We will see in section 6.2 how to model additional uncertainty in a Poisson mean by using related distributions such as the
negative binomial distribution. This added uncertainty could be detected if the variance of the data significantly exceeds the

Fig. 1. Poisson distribution.

least x coincidences of statistically independent
drug and events per time period given by (equa-
tion 4):

Prob (XZX):I—Z:_H p*/x!
€

where L is the expected or average number of cases
given the background incidence (b) of the event and
the estimated level of drug exposure (n), that is,
W = nb. The critical number of cases for rejecting
the null hypothesis of statistical independence
between drug and event is Prob (X =X, when Hp)
<o. If the number of adverse event reports is
greater than X, the hypothesis of independence
between drug and event is rejected.[20-27]

An illustration of the Poisson technique is the
association of spinal and epidural haematoma (ex-

© Adis International Limited. All rights reserved.

tremely rare adverse events after spinal and epi-
dural anaesthesia) after neuroaxial blockade and
preoperative thromboprophylaxis with a low-
molecular-weight heparin.[?!1 The table of critical
values shows the need for the number of spontane-
ous reports, background incidence of the adverse
event and the estimated exposure level (table I).
For a given critical alpha level the critical num-
ber of adverse event reports can be read off from
the table. If 100 000 patients receiving low molec-
ular weight heparin underwent spinal or epidural
anaesthesia the probability of at least four reports
would be 0.005. The 22 spontaneous reports of this
event actually submitted, for example, were there-
fore much higher than expected for statistical in-
dependence. This result is unlikely to be a mani-
festation of poor baseline risk or drug exposure

Drug Safety 2003; 26 (3)
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Table I. Example of the Poisson method applied to spontaneous reports of spinal haematoma with a low molecular weight heparin (probability
of >x adverse drug reaction reports of spinal haematoma assuming a background incidence of 1 : 150 000)12']

No. of reports

No. of patients receiving low molecular weight heparin undergoing neuroaxial block (in thousands)

10 25 50 100 150 200 250 300 500
1 0.064 0.154 0.283 0.487 0.632 0.736 0.811 0.865 0.964
2 0.002 0.012 0.045 0.144 0.264 0.385 0.496 0.594 0.845
3 <0.001 <0.001 0.005 0.030 0.080 0.151 0.234 0.323 0.647
4 <0.001 0.005 0.019 0.046 0.088 0.143 0.427
5 <0.001 0.004 0.012 0.028 0.053 0.243
6 <0.001 0.003 0.007 0.017 0.121
7 <0.001 0.002 0.005 0.053
8 <0.001 0.001 0.021
9 <0.001 0.007
10 0.002
11 <0.001

estimates. Even with a much higher baseline risk
of 1/35 000 and with 350 000 patients exposed it
would be unusual to receive more than 20 reports.
The probabilities of the number of reports ob-
served are actually much lower given underreport-
ing in voluntary surveillance systems.

Since many events detected after approval have
low baseline rates, some claim that no more than
one to three reports should be coincidental under a
Poisson distribution and that for diseases with ex-
tremely low baseline incidence such as aplastic
anaemia, more than three reports is a strong sig-
nal.[20] The usual limitations of spontaneously re-
ported data, including substantial underreporting,
and other extraneous factors apply. Underreport-
ing decreases the statistical power of the method.
Accepting higher significance levels can partially
compensate for this but given the relatively small
variance of the Poisson distribution this would re-
quire substantial increases in the significance
level.[20] This method may be most helpful in vac-
cine safety, where large numbers of healthy indi-
viduals receive treatment.

3. Observational
Epidemiological Methods

Observational epidemiological databases are
used for signal detection.!*] Although case-control
methodology is usually applied to the analysis of

© Adis International Limited. All rights reserved.

signals already detected by other means, multipur-
pose case control databases are being used to
screen for and clarify signals of drug-event associ-
ations. The Slone Epidemiology Unit (SEU) has
used this method to detect signals of adult illnesses
and fetal malformations using separate data-
bases.[*l Such data sets may be most useful for
drugs involving moderate risk, since relatively
common adverse events are often detected in clin-
ical trials and rare events usually are detected with
large databases composed of spontaneous reports.

Databases are screened annually by estimating
odds ratios for all drugs and drug classes for each
adverse event, compared with all other events.
Crude and Mantel-Haenszel adjusted odds ratios
are calculated. In the adult case-control surveil-
lance system of the SEU this is done for current
drug exposure (use within previous 6 months) ver-
sus past, and again according to lifetime exposure
stratified by treatment duration. Odds ratios are
displayed as a printout according to drug and event.
To control signal volume additional output criteria
are utilised, e.g. at least 50 drug exposures. Asso-
ciations considered significant are subjected to de-
tailed case-control analysis. 4]

Two refinements increase the utility of these
databases for signal detection. Selective enrolment
of cases involving an array of diseases of interest
and selective enrolment of controls hospitalised for

Drug Safety 2003; 26 (3)
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diseases that are not usually drug-induced (e.g. ap-
pendicitis) can increase efficiency of signal detec-
tion for the conditions of interest.

4. Numerator-Based Methods

4.1 Short Memory Schemes

Short memory schemes use conditional bino-
mial tests performed sequentially at fixed time in-
tervals to detect an increase in the mean of a Pois-
son process.[!”7] The number of adverse event
reports in the current time period (i.e. s + 1 weeks)
is compared with the total number of cases during
a prior reference time interval (i.e. s weeks where
s represents ‘the memory of the scheme’). Since
the most recent data are used for memory, it is
known as a short memory scheme.®! With ‘non-
epidemic conditions’ in both memory and current
reporting period, the total number of cases should
be distributed uniformly within limits of sampling
variation. The expected proportion of cases is 1/(s
+ 1) in the current reporting period and s/(s+1) in
the memory period. The number of reports in the
current reporting period is binomially distributed
with parameter 1/(s + 1) under the null hypothesis
of no difference and y/(s + y) under the alternative
hypothesis that there is an epidemic. The null
hypothesis of no epidemic would be rejected if
(equation 5):

Zy =y NINDAN=y)lyh]
[L/s+DP [s/s+D]" Y <

where Y = the number of cases/events in the pres-
ent week and N = sum of cases/events in the pre-
ceding s week memory period plus cases in the
present week. This technique can be used when the
baseline rates are unknown. Application of this
technique to drug safety surveillance is limited.
Three numerator-based methods are currently
the focus of attention of regulatory agencies and
drug developers. These are PRRs, the BCPNN and
EBS. The latter two methods are based on the con-
struction of probability models and the application

© Adis International Limited. All rights reserved.

Table Il. 2 x 2 table for proportional reporting ratio calculation

Specific drug  All other drugs

Specific adverse event A B

All other adverse events (¢} D

of Bayesian inference. The remainder of this arti-
cle is devoted to a detailed examination of these
three methods.

5. Proportional Reporting Ratios (PRRs)

An early attempt at quantitative analysis of
spontaneous reports involved PRRs.[157-101 PRRs
are analogous to proportional mortality ratios in
epidemiology and based on the observation that
the proportional frequency of individual adverse
reactions reported to the UK Yellow Card system
(the spontaneous reporting system in the UK) is
relatively constant over time despite the signifi-
cant increase in total reports. PRRs can be under-
stood by the following 2 X 2 contingency table
(table II).

As seen in table II (equation 6):

PRR =[a/(a+c)]/[b/(b+d)]

Although statistical significance testing in the
context of such anecdotal and uncontrolled data is
circumspect, it can be used as an automated signal
detection criterion. For instance, drug-event com-
binations with at least three reports, a PRR >3
and a chi-square >5 would represent a signal. An
example of PRRs in signal detection is shown
using the example of rifabutin-induced uveitis
(table III).5!

Table lll. Proportional reporting ratio (PRR) of uveitis with rifabutin

Rifabutin All other
drugs
Uveitis 41 754
All other adverse events 14 591 958

Proportion of rifabutin adverse events as uveitis = 0.75 = [41/(41 + 14)]
Proportion for all other drugs = 0.0013 = [754/(591, 958 + 754)]
PRR = 586 = (0.75/0.0013); 32 = 22 740.

Drug Safety 2003; 26 (3)
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The performance characteristics of PRRs have
been evaluated in both regulatory databases and
smaller postmarketing surveillance databases of
drug developers.[”19 Using a cut-off of PRR >2
and chi-square >4 for all adverse events occurring
with a frequency of >2, in the UK Yellow card/
ADROIT (Adverse Drug Reaction Online Infor-
mation Tracking) database about 60% of signals
were of known adverse reactions. Approximately
15% were assessed as false-positive signals repre-
senting confounding by indication. About 25% of
the signals identified by this PRR method were
novel and underwent detailed evaluation. A more
extensive analysis of the performance of charac-
teristics of PRRs in the MCA database was recently
published. [ The PRR method was applied to the
15 newly marketed drugs with the highest overall
adverse event reporting frequency during 1996—
1998 to determine whether it would identify
known hazards and possible signals of previously
unknown adverse events. In this study signal selec-
tion criteria consisted of a PRR 22, chi-square >4
and a crude reporting frequency of 3. There were
487 drug-event combinations meeting the speci-
fied signal criteria. These potential signals in-
volved 10% of the ‘preferred terms’. Six were con-
sidered unevaluable. On average, the method
detected five unrecognised signals per drug. Of the
481 evaluable potential signals, 339 (70%) were
recognised adverse events, 62 (13%) were attrib-
uted to underlying comorbidities, and 80 (17%)
were judged to warrant further evaluation as poten-
tial signals of previously unrecognised adverse
events. The details of the individual case causality
assessments supporting the latter judgements were
not provided. Twenty-two of the 80 newly identi-
fied potential signals warranted on-going monitor-
ing, and three singles generated a request to the
pharmaceutical manufacturer to amend product in-
formation. So, based on these data, the positive
predictive value of any signal for the 15 selected
drugs detected by PRRs was 3/481 = 0.006, i.e.
0.6% of signals detected triggered regulatory inter-
vention to change product information. The same
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three reports constitute 2% [3/(80 + 62)] of signals
involving unlabelled events. The authors did not
specify whether these findings were obtained from
serial database scans or a single scan covering the
entire 3-year time period. Performance charac-
teristics could vary depending on whether serial
scan versus a single scan was performed, although
the short time interval of 2 years mitigates against
a major effect. It should be emphasised that these
findings apply to only 15 selected drugs in a
database consisting of over 400 000 reports and
600 000 reactions.®!

PRRs can be used with other covariates. For a
given adverse event-drug combination, the PRR of
concomitant medications has been used to detect
signals of drug interactions considered well estab-
lished on the basis of citation in the FDA’s ‘Dear
Healthcare Professional’ letters or in the published
literature.!28] This method detected signals for ap-
proximately two-thirds of the well established drug
interactions, some of which may have been de-
tected prior to the first published literature refer-
ences. However, no data were provided to docu-
ment that individual case-causality assessment
would have verified the signal and resulted in la-
belling changes.

PRRs are relatively easy to understand and cal-
culate and are now part of routine surveillance ac-
tivities at the MCA, so this method has increasing
evidentiary support. Computational ease of use is
an important advantage considering the dynamic
nature of the data and associated sequential scans
of increasingly large data sets. Its greatest utility
may be in highlighting drug-event combinations
with intermediate PRRs, since those with very
large scores were noted to involve recognised ad-
verse events (e.g. rifabutin and uveitis), while pairs
with PRRs near 1 may be triaged as likely back-
ground noise. Care must be taken when strong sig-
nals are detected for a given drug, since this will
reduce the PRR for other adverse events with that
drug. This could be addressed by excluding events
with very strong signals.
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Bayesian and frequentist.

together is not dependent on the order in which they occur).

multiplied by the probability of D:
P(E,D) = P(E|D) P(D) or P(D,E) = P(D|E)P(E)
Rearranging we have

P(E|D) = P(E,D)/P(D)

P(E|D)/P(E) = P(E, D)/P(E)P(D)

9(EID) = f(D|E)9(E)), .H(DIE)9(E)IE

Two different approaches to statistical inference take fundamentally different viewpoints towards statistical decision-making:

‘Classical' frequentist seeks the value of a population parameter by assuming it is unknown yet fixed and can be estimated
using sample data obtained randomly from the population of interest in a repeatable experiment. It seeks objectivity by
restricting the information used to that obtained from a current set of clearly relevant data.

Bayesian inference starts with a preexisting personal assessment of the probability distribution of the parameter in question (the
‘prior distribution’). Note that this is a probability distribution of possible probability models. This is why the parameters of the
prior distribution are often referred to as hyperparameters (versus parameters of a simple probability distribution). It allows us to
weigh various underlying models at the same time. This can be based on previous experience or expert knowledge or may
make minimal assumptions (an 'uninformative prior'). This is intuitively plausible since we use previous knowledge and
experience to make approximate probability estimates to support our decisions every day. This approximation is made prior to
the experiment and mathematically summarises our initial assessment of how likely various values of the unknown parameter
are. We then use the data from our experiment to refine this initial (‘prior') estimate using Bayes theorem. To understand Bayes
theorem it is best to initially look at discrete data that is exchangeable (i.e. the probability of two events E and D occurring

Intuitively the joint probability of two events occurring P(E,D) is related to the probability of E conditional on D occurring

Multiplying both sides by 1/P(E) , we can thus get the formula in the form of joint probability as follows:

From the perspective of signal detection, P(E|D) would be posterior probability of observing a specific adverse event E given
that a specific drug D is listed as the suspect drug, P(D) is prior probability that a specific drug D is observed in the entire
database, P(E) is prior probability that a specific adverse event E is observed in the entire database, P(E,D) is joint probability
that both a specific drug D and a specific adverse event E were observed in the same database coincidentally. The identity of
the drug D can be said to provide support for the adverse event E. If the left hand ratio is greater than one this means that the
probability of a report listing event E is increased if we know that the identity of the drug is D.

The analogous relationship with continuous probability density functions would be

The updated distribution is the 'posterior distribution'. The posterior probability is in effect telling us how likely a given value of
the parameter is given the observed data (g(E|D)), based on an initial hypothesis about the parameter of interest (g(E)) and the
conditional probability distribution of the data. This is the inverse of the usual statistical analysis in which we determine how
likely a given value of the data is given the value of the parameter.

Fig. 2. Bayesian inference.

6. Bayesian Data Mining

A major initiative in signal detection is Bayes-
ian data mining.3-®11-15] Data mining integrates
several technologies and knowledge domains, in-
cluding data management, probability and statis-
tics, machine learning, and data visualisation, to

© Adis International Limited. All rights reserved.

detect novel and potentially useful patterns in large
databases in the absence of a priori hypothesis.
‘Bayesian’ refers to the use of Bayesian infer-
ence (figure 2) Each Bayesian method seeks to
take advantage of the vast amount of information
on drugs and adverse events contained in the entire
database. Two different Bayesian mining tech-

Drug Safety 2003; 26 (3)
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How much information does the flip of a coin convey? If the coin is rigged so that both faces are the same the flip of the coin
does not provide any new information because it does not reduce the level of uncertainty. If the coin is fair the result of a coin
flip does convey information because it has reduced the level of uncertainty.

Information theory emerged in the 1940s to describe and quantify information transfer in communication systems. Claude
Shannon demonstrated the essential unity of all information media, which could be encoded in a universal language of binary
digits or bits. The information component (IC) used in the Bayesian Confidence Propagation Neural Network (BCPNN) can be
understood with basic information theory.

Given the connection between information and probability that an event occurs (p), we want our measure of information, I(p), to
have several properties: (i) it should be a non-negative number (I(p) = 0); (ii) if the probability of an event is 1(the event will
definitely occur) the outcome does not convey any information (I(1) = 0); (iii) if we observe two independent events, the
information communicated is the sum of the individual information quanta (I(p;p,) = I(p4) + I(p,)) and; (iv) it should be
continuous and monotonic, which means that slight changes in probability correspond to slight changes in information.

Logarithmic functions behave this way. From these requirements we justify the following important measure:

I(p) =—log,(p) = logy,(1/p)

The negative signs ensure that all probabilities have some associated quantity of information. Note that p = 1/2 maximises the
information content since the absence of any prior data favouring one outcome or another makes the outcome most informative.
If we have prior information about the coin (e.g. that it is weighted so that it comes out heads 60% of the time) the outcome is
less informative.

That this definition is intuitively appealing can be seen by considering the most elementary unit of information, the binary digit or
bit. Let's say we have | bits of information that are used to specify n messages, states, outcomes etc. The number of
messages, states, or outcomes is n = 2. Taking logs we get | = log, n. Since the probability of any given outcome or state is
inversely proportional to the total number of states we get | = log, (1/p) as above. This also demonstrates that the base 2
logarithm is used since the bit is the most elementary unit of information.

Shannon derived a formula for a quantity known as the 'mutual information' that measures the average reduction in uncertainty
or the increase in information about a given variable (e.g. the probability of an adverse event report occurring in the database,
P(X)) when you learn of the value of another variable (e.g. the suspect drug, Y):

Mutual information = 2; P(XY,) log, [(POX,Y)/(P(X)P(Y))]

Notice that given the probability-based definition of information discussed above and the properties of logarithms we could
rewrite this expression as the difference in information associated with knowing the joint probability of drug and event appearing
on the same report and knowing the product of the individual probabilities (reflecting statistical independence). So the
information that X tells us about Y is the reduction in uncertainty about Y due to knowledge about X. If X and Y are statistically
independent then P(Xin) = P(Xi)P(Yj). Then the mutual information becomes log,[P(X)P(Y)/(P(X)P(Y))] = log,1 = 0. This makes
sense since if the events are independent the knowledge of one of the variables contributes no new information about the other
variable and does not reduce the uncertainty about it.

Fig

. 3. Introduction to information theory.

niques have recently been applied to two different
postmarketing safety databases.[3-0:11-15] Both can
be conceptualised as consisting of three compo-
nents: an adverse event data set, a derived data set
of signal scores for adverse event-drug associa-
tions and visualisation tools designed to graphi-
cally highlight the derived signal scores.

One method uses ideas derived from informa-
tion theory to calculate a quantity known as the
information component (IC) for each drug-event

© Adis International Limited. All rights reserved.

combination in the database (figure 3).3:¢) The
value, precision and time trend of the information
content is the basis for signal detection. The other
method, which has been applied to the FDA spon-
taneous reporting system, involves a data-mining
technique known as EBS. It ranks drug-event com-
binations according to how ‘interestingly large’ the
number of reports of that drug-event combination
is compared with what would be expected if the
drug and event were statistically independent.[11-15]
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A key difference between the two methods is the
fact that one provides a stand-alone measure (IC)
for each drug-event combination, while the other
technique emphasises an overall ranking of drug-
event combinations.

These methods visualise the postmarketing
safety database as a matrix with rows and columns
usually consisting of adverse events and drugs (al-
though in principle other database variables could
be used). Cell counts are the number of adverse
events reported for each drug-event combination.
A model is first chosen to calculate expected cell
frequencies (EBS) or probabilities (BCPNN) as-
suming statistical independence between drug and
event. Next, a function is chosen to describe the
size of the observed cell counts or probabilities
compared with the previously calculated expected
cell counts or prior probabilities. The variation in
the function is fitted to one of several probability
distributions, allowing the analyst to assess
whether each value of the function is ‘interestingly
large’ in relation to the expected value of its vari-

ance. The larger the value of this function the
greater dependency between drug and adverse
event than expected for statistical independence.

6.1 Bayesian Confidence Propagation
Neural Network (BCPNN)

Since 1998 the UMC has used Bayesian infer-
ence (figure 2) to detect signals in their database
of almost 2 million AE reports with 49 data fields
per report. The BCPNN operated by the UMC uses
neural network architecture (figures 4 and 5) to
detect signals.[3:6]

The BCPNN is imbedded in a neural network
because neural networks are self-organising,
suited to parallel computation, computationally ef-
ficient and provide a simple probabilistic interpre-
tation of network weights.[3! Computational effi-
ciency may be particularly advantageous with this
programme because the BCPNN starts by calculat-
ing cell counts for all potential drug-adverse event
combinations in the database, not just those that
appear together in at least one report. This is ac-

is shown in figure 5.

solution.

A neural network is a data processing model inspired by the structure and pattern of neurons in living organisms. The
fundamental unit of a neural network is an artificial neuron that is an information processing device with multiple inputs and one
output. This is analogous to a living neuron with its multiple dendrites and single axon. Neurons are connected by synapses. In
biological nervous systems each neuron synapses with multiple inhibitory and excitatory neurons. Whether a neuron fires is
determined by the relative weights of inhibitory and excitatory inputs. An example of neural network model of cancer diagnosis

In neural networks large numbers of data processing elements (nodes) are arranged in parallel, highly interconnected layers.
Using training datasets this highly interconnected architecture learns to analyse similar but imprecise datasets to solve
problems such as pattern analysis, trend recognition or function approximation.

Neural network architecture can be classified by the number of layers of data processing elements and the directionality of
signal transmission. The commonest architecture consists of three layers of units: an input layer (where the raw data is fed into
network) connected to a middle layer of 'hidden' units that is connected to a layer of output units. Signals travel only from input
to output in feed-forward networks. Signals can travel in both directions in a feedback network via feedback loops.

Neural networks learn by example unlike conventional computers that follow a set of unambiguous instructions (algorithm or
computer program) to solve problems. This restricts the problem solving capability of conventional computers since the solution
to the problem must already be understood. The conventional computer then provides the computational muscle to effect the

When the network is being trained individual neurons are trained to fire or not fire depending on the pattern of inputs. When the
neural network is actually being used and a taught input is detected, its associated output becomes the current output. If the
input pattern is not exactly one of the teaching patterns, a firing rule that matches the input pattern to the closest training pattern
is used to determine if the neuron will fire. Firing rules are important in neural networks and explain their flexibility.

Fig. 4. Introduction to neural networks.

© Adis International Limited. All rights reserved.
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Fig. 5. Neural network model of cancer diagnosis. Potentially predictive clinical variables are input into the first layer of data processing
elements. These multiple inputs with their respective weights and a bias value to a specific neuron (a processed clinical variable)
result in a single output, which then acts as one of the inputs for the neurons at the next layer until the final diagnosis is achieved.

complished with two fully interconnected layers,
one for all drugs and one for all adverse events.[3-0]

The IC (figure 3) is calculated for each drug-ad-
verse event combination in the database and mon-
itored with sequential time scans. Denote the over-
all probability of finding a given event in the
database as P(x), the probability for a given drug
as P(y) and the probability of finding the drug-
event in the same report is P(x,y). The BCPNN
calculates the IC for drug-event combinations de-
fined as (equation 7):

IC=log, [P(x,y)/(P(x)P(y))]

Each of the original probabilities (priors) of
drug, event and drug-event combinations are mod-
elled as a beta distribution (figure 6). The joint
probability of the drug-event combinations is actu-

© Adis International Limited. All rights reserved.

ally modelled with a generalisation of the beta dis-
tribution known as the Dirichlet distribution. The
expected value of each beta distribution is based
on the weights of the individual probability models
modelled by the beta density. The variance of the
beta distributions and the IC (which is a function
of the beta distributions) allow the uncertainty of
these estimates to be calculated and expressed as
95% confidence intervals (CI).

Using Bayes formula, observed cell counts are
used to revise the prior beta distributions. The re-
vised beta distribution is the posterior distribution.
The posterior distribution for a given quarterly
time scan of the database is then used as the prior
distribution for the subsequent quarterly database
scan. As more reports are entered into the database
over time further revisions are made and the vari-
ance of the beta distribution decreases.
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If the probability of co-occurrence of drug and
event is the same as the product of the individual
probability of drug and event (independence be-
tween drug and event), the Bayesian likelihood es-
timator P(x,y)/P(x)P(y) will be equal to 1 (equal
prior and posterior probabilities) and since the log-
arithm of 1 is 0, IC = 0. Since P(x,y)/P(x)P(y) is
equal to P(xly)/P(x) (figure 2), as the posterior
probability P(xly) [e.g. probability observing a
specific adverse event (x) given a specific suspect
drug (y)] exceeds the prior probability P(x) [e.g.,
probability that a specific adverse event x is ob-
served in the entire database], the IC becomes
more positive and, depending on how large it is,
may detect a signal. Corresponding 95% Cls are
calculated for each IC. In order to detect a signal
based on the IC of drug-event associations, se-
quential time scans of the database are performed
given the dynamic nature of the data set. An IC
with a lower 95% CI > 0O that increases with se-

quential time scans (e.g. a stabilised positive signal
score) is a criterion for signal detection.

Figure 7 shows the IC for captopril and cough
over quarterly time scans of the WHO database.
Over time the number of adverse event reports of
all kinds increase. This increase in the quantity of
data increases the statistical precision of the esti-
mated IC as reflected in a narrowing CI (increasing
number of adverse event reports). Notice that the
lower 95% CI goes from negative to positive and
thus detects a signal. Note that the IC became pos-
itive in the second time scan in 1983. At that time
there were only three reports of captopril and
cough in the database.

Similarly, figure 8 shows quarterly time scans
for digoxin-acne. Note that the estimated IC be-
comes more precise and becomes negative with
serial time scans.

Figure 9 shows quarterly time scans for the as-
sociation digoxin and rash. Note that the IC be-

f(x) = K;x*1(1-x) B1, 0 <x <1, x>0, >0

drug—event—, drug+event—, drug—event+).

parameters of the prior distribution.

Let us try to understand the nature of the beta distribution and why it is useful in modelling prior probabilities. The beta family of
probability distributions are described by two parameters (a,) and characterised by the following probability density function:

Note that for a beta distribution with parameter values >1, F(x) = 0 when x = 0 and x = 1. This is described as being bounded
between x = 0 and x = 1. Since probabilities (and proportions and percentages) are bounded between 0 and 1(100) this
characteristic of the beta distribution is one of the most obvious reasons for using them to model prior probabilities. Beta
distributions are also flexible. Altering the parameters provides a rich variety of beta curves with differing peaks, locations,
dispersion and skewness. This ability to ‘fine tune' the shape of the beta curve is advantageous when modeling samples of
probabilities. With multiple outcome variables a distribution known as the Dirichlet is used. This is just a higher dimensional
generalisation of the beta distribution applicable when you have more than two joint probabilities to model (e.g. drug+event+,

For a given value of o larger values of B generate curves that are more heavily weighted to low probabilities e.g. the curve
peaks at lower probability models and is skewed right. Larger values of the sum o + B also make the curve less 'responsive' to
observed data. In other words the posterior probability that we obtain by applying Bayes theorem is not as moved away from
the prior probability as curves with lower values for this sum. This allows us to choose priors for cells with low cell counts that
suggest statistical independence (e.g. information component [IC] approaches 0) and which require an adequate amount of
data (e.g. sufficiently large cell counts) to move the posterior away from statistical independence. Thus the probability
estimates for cells with low counts is 'shrunk’ toward the expected value of the prior distributions by suitable selection of prior
hyperparameters contained in IC. This probability estimation is therefore known as shrinkage estimation.

Beta distributions have the added advantage that they form a natural conjugate pair with binomial sampling distributions. So we
can make an educated guess of these prior probabilities, update them with the observed binomial sample data, and the updated
posterior distribution will have the same parametric form as the prior, namely a beta distribution. The only difference will be the
updated parameter values of the posterior distribution that are derived from simple addition of the observed data to the

Fig. 6. Beta distribution.

© Adis International Limited. All rights reserved.
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Fig. 7. Change in information component (IC) between 1979 and 1996 for the association of captopril and cough. The IC is plotted
at quarterly intervals using data from the WHO database with (95% CI shown).

came positive briefly in 1968 corresponding to the
addition of one report of rash with digoxin. The CI
for this IC is quite wide, however. More impor-
tantly, with subsequent time scans the estimated IC
is more precise and clearly negative over time.
The UMC evaluated the performance charac-
teristics of the BCPNN with ‘new’ drugs (not de-
fined), including a comparison with the former sig-
nalling method.[! Two established compendia of
drug information (Martindale’s Extra Pharmaco-
poeia and the Physicians’ Desk Reference [PDR])
were used to assess associations derived from a
retrospective (1993) BCPNN quarterly scan of the
database. Drug-adverse event combinations for
which the lower 95% CI of the IC changed from
negative to positive in the first quarter of 1993
were considered a positive association. Drug-

© Adis International Limited. All rights reserved.

adverse event combinations were classified as neg-
ative associations if the lower 95% CI for the IC
changed from a positive value to a negative value
in the same time period. An association was con-
sidered a valid signal if the drug-adverse event
combination was listed in the July 2000 online ver-
sions of Martindale and the PDR and not listed in
the 30th edition (1993) of Martindale. A nonsignal
was defined as a drug-adverse event combination
that was not listed in the July 2000 on-line versions
of Martindale or listed in the 30th edition (1993)
of Martindale. The performance of the BCPNN
was also assessed against the previous signalling
procedure (‘level 2’ association; see section 2) by
looking at all drug-adverse event combinations
meeting the ‘level 2’ threshold in the first quarter
of 1993.
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A total of 682 drug-event combinations met
threshold criteria for a positive association in the
time period of interest; 107 of these involved ‘new’
drugs. Thirty-two drug-adverse event combina-
tions met criteria for negative associations during
the same time period, of which 15 involved ‘new’
drugs. Seventy-one (66%) positive associations
with new drugs were not listed in the 30th edition
of Martindale. Thirty-six drug-adverse event asso-
ciations were either compatible with (listed as a
WHO high-level term) or specifically referenced
in the 30th edition of Martindale. Excluding non-
signals (defined as already known drug-event
combinations) and cases involving a drug with-
drawn during the time period reviewed the positive
predictive value was 44% (42/95) and the negative
predictive value was 85% (11/13).

Ten drug-adverse event combinations met the
level 2 threshold in 1993 and were subsequently

IC
o

circulated as a signal at various times after meeting
threshold criteria. Six of the ten drug-adverse
event combinations meeting level 2 threshold
were flagged by the BCPNN. Four of the six drug-
adverse event combinations met BCPNN signal as-
sociation criteria prior to being circulated as a sig-
nal first detected by the previous signalling
procedure.

There are no published comparative evaluations
of the BCPNN versus other methods of Bayesian
data mining, although there are unpublished data
comparing the BCPNN with both PRRs and EBS.
A major research focus at the UMC is training the
BCPNN in pattern recognition to discover higher
level dependencies, including variable combina-
tions never reported on any single adverse event
report that could represent previously unrecog-
nised syndromes.

-2

-6

T T T
67:1 691 711 731 751 771 791
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Fig. 8. Change in information component (IC) between 1967 and 1996 for the association of digoxin and acne. The IC is plotted at
quarterly intervals using data from the WHO database with (95% CI shown).
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Fig. 9. Change in information component (IC) between 1967 and 1996 for the association of digoxin and rash. The IC is plotted at quarterly

intervals using data from the WHO database with (95% CI shown).

The UMC is marketing paid subscriptions to the
BCPNN on a per product rate. Subscribers can per-
form their own signal detection and also receive a
copy of the signal report that UMC sends to inter-
national regulatory bodies.

Ultimately the utility of a signal detection sys-
tem is not just determined by the ‘goodness of fit’
of the model but whether the signal detected results
in the discovery of causal associations when indi-
vidual cases making up the signal are scrutinised
by expert clinical reviewers. Although the signal
detected for cough and captopril by the BCPNN
‘pre-dated’ the first published literature reports of
this association, this is not in itself informative,
since the results of individual causality assess-
ments remain unknown. Unless causality assess-
ments were performed prospectively, the utility of

© Adis International Limited. All rights reserved.

the first signal cannot be completely evaluated,
since association does not prove causation and can
have numerous explanations

6.2 Empirical Bayes Screening (EBS)

Another approach to finding ‘interestingly
large’ cell counts is EBS,!'I"15] which was initially
developed and applied to the FDA databases of
spontaneous reports. This was originally under-
taken to explore ways to detect signals of adverse
events that were gender-selective.l?$2% In EBS a
baseline frequency or null hypothesis is used that
averages cell counts like multiple two-way tables
for tests of independence. It is helpful to look at
the formula for expected cell counts provided by
the originator of this application, DuMouchel,
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since it can be expressed in a simple manner for
those not used to multiple summation notation.
DuMouchel expresses the expected cell count as
follows (equation 8):

Bjj =24 Niy N /Ny

where i = drug, j = event, k = number of strata.

The sum of N;x represents the total number of
reports with a given drug (drug i is being summed
over all events, j) and N ji is the total number of
reports with the given event (event j summed over
all drugs 1), and the denominator is the total num-
ber of reports (summation over events i and drugs
j)- Let us examine what this means using a simpli-
fied k(2 x 2) contingency table for drugs and ad-
verse events (table IV). The k represents a third
stratification variable.

We see that independence between drug and event
would give the following formula (equation 9):

Ejj = . [(A+B)/(C+D)]xC

If the drug and event are independent the pro-
portional representation of that event for the spec-
ified drug should be the same as the proportional
representation of that event in the entire database
(A +B)/(C + D). Multiplying this by the total num-
ber of reports with the given drug gives the ex-
pected count for that drug-event combination. Re-
ferring to table IV it is easy to see the equivalence
of the two ways of expressing expected cell counts.

Three distance functions are then used to rank

drug-event frequencies according to how ‘interest-
ingly large’ they are:
1. A relative risk measure RR = Nj/E;; (observed/
expected cell counts). Although this measure can-
not be regarded as a formal relative risk, the con-
cept is intuitive but does not convey the precision
of the estimate, so that the same relative risk could
have markedly different statistical interpretations
depending on the absolute values of numerator and
denominator.

© Adis International Limited. All rights reserved.

Table IV. k(2 x 2) contingency table for calculating E;
All other

No. of reports Given Corresponding

drug (i) drugs notation by
DuMouchel
With given A B A + B = Nk = ZiNik
adverse event (j)
Total C D C =N ik = ZNik;
C + D = XNk

2. A test of statistical significance, logP;; which
accounts for sampling variability by calculating
the probability of obtaining an observed drug-
event frequency given the expected or baseline ex-
pectation value for a Poisson distribution. The im-
portance of ranking the drug-event frequencies
over the absolute value of the signal scores is un-
derscored by the description of the logP;: ‘The
concept behind such a measure is not that the null
hypothesis is taken seriously, but only that the test
statistic or its degree of significance might be a
useful measure for ranking the degree of associa-
tion among the different cells’.l'!]

3. The EBGM jj = 2 EBlog2; (the geometric mean of
the empirical Bayes posterior distribution of the
true relative report ratio).

The last measure requires more explanation.
Note that neither of the first two scalar functions
incorporates information on the size of the cell plus
a corresponding estimate of precision. How do we
evaluate drug-event combinations with a given rel-
ative reporting rate but differing expected and ob-
served frequencies? A drug-event combination
that is observed in 200 reports and has an expected
frequency of 20 reports would have the same rela-
tive reporting rate of 10 (200/20) as would a drug-
event combination reported 20 times with an ex-
pected frequency of 2. The smaller numbers of the
latter drug-event combination are more unstable
statistically.

EBS is able to deal with this problem by calcu-
lating the log likelihood function. Assume that the
various (equation 10):

}\‘S:p'ij/Eji
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(where L;; is an unknown mean of Poisson distri-
bution) for each drug-event (observed count Nj;)
represent a draw from a common prior distribution
of As. How can we model the probability distribu-
tion of A? It turns out that mixtures of Poisson dis-
tributions can be effectively modelled using the

family of gamma distributions (figure 10). For en-
hanced modelling flexibility DuMouchel assumes
a mixture of two gamma distributions. This pro-
vides greater modelling flexibility by increasing
the number of modifiable parameters from two to
five (two parameters for each gamma plus a mixing

distributions.
P(x; n,A) = [AVI'(n)]x"-1e-Ax

distribution would be

P(x;1,B) = [(1/B)/T(a)](x/B)* e (1P

distribution.
P(x;u) = e u¥/x!

Poisson Distribution
Discrete distribution

Gives the probability of observing different

T(n) = J.oymx"" eX dx

The gamma distributions may be daunting to those without a background in mathematical statistics. In this figure we try to
show why gamma distributions are chosen for modeling uncertainty in Poisson processes in Empirical Bayes Screening.

Gamma distributions constitute a family of two parameter distributions This means that each member of the family (each curve)
is completely specified by two parameters. One of these parameters specifies the shape of the curve and the other specifies the
scale of the curve. This family of curves includes many of the most familiar distributions including the exponential and x2

The formula for the gamma distributions, which we will justify below is

One potential source of confusion to look out for is that different authors use different symbols for the gamma parameters. The
most common variation is using o instead of n and 1/ instead of A. So another commonly encountered formula for a gamma

The standard mechanistic explanation of the gamma distribution is that it describes the probability of observing various waiting
times until a certain number of Poisson events take place. So a gamma (3,2) distribution would tell you the probability
distribution of the length of time you would have to wait to see 3 adverse events occur given that on average 2 adverse events
occur per unit of time. We can gain some insight into the gamma distribution by comparing it with the familiar Poisson

numbers of rare events in a given period of time.

How do we justify the use of a gamma distribution? The simplest way to do this is to consider the event we are modelling
(adverse event probabilities) and the shape of the gamma curves. Since by definition and derivation Poisson events are rare
(e.g. adverse drug events detected in the postmarketing period) and greater than or equal to zero (e.g. negative rates of
occurrence do not make sense) we would want a curve that is bounded on the left by 0 and is skew right (weighted to lower
values). This is precisely the shape that can be achieved with certain members of the family of gamma distributions. So it
makes sense for rare events with a relatively high variance and for which negative values do not make sense.

Do not be intimidated by the gamma function, I, which appears in the denominator of the gamma distribution.

Just as factorials of integers appear in the expression of many discrete probability distributions (e.g N!), the gamma function
generalises the idea of factorial to non-integer values for continuous probability distributions like gamma.

Another advantage of the gamma distribution is that it forms what is known as a conjugate pair with the Poisson distribution. If
we have a hypothesis about the parameter of interest, say that it follows a gamma distribution, we can update our estimate with
count data from a Poisson sample and the computation required to revise the prior parameters is limited to simple addition.

P(x;n,A) = [AV/I(n)]xn-1ex

Gamma Distribution
Continuous distribution

Gives the probability of observing different
periods of time for a given number of rare events.

Fig. 10. Gamma distributions.
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Why is the negative binomial distribution used to model the unconditional observed cell counts? The negative binomial
distribution is similar to the binomial but instead of providing the probability of n successes in N trials it describes the probability
distribution of the number of trials that are required to achieve n successes given probability of success of q and probability of
failure as p.

P(n) = [(r+n-1)}(n-1)!r1](@)"(p)"

Why should the observed drug-event cell counts follow such a distribution? Remember each individual cell represented a
Poisson process where the Poisson parameter A was not single value but had is own probability distribution (gamma
distribution). Also keep in mind that a useful diagnostic for a Poisson distribution is whether the mean of the distribution is the
same as the variance. It turns out that when there is uncertainty in a Poisson parameter A, the added uncertainty in the Poisson
process itself is reflected as an increase in the variance. The negative binomial distribution is similar to the Poisson distribution
but with a greater variance. Intuition tells us that the wide range of cell counts would be over dispersed for a Poisson
distribution. The negative binomial distribution would take this increased variance into account. This intuition can be rigorously
confirmed by deriving the negative binomial as [ (Poisson density)(gamma density) although we will not work out this problem in

integration by parts here.

Fig. 11. Negative binomial distribution.

parameter describing the relative contribution of
each gamma). So the unconditional prior distribu-
tion of A is a mixture of two gamma distributions
with five parameters as o, 0, B, B> and P (mixing
parameter).

For each individual observed drug-event count
Nj;, there is a posterior conditional distribution for
Aij. This conditional distribution is also a mixture
of two gamma distributions because Poisson and
gamma form a conjugate pair. It is a function of
the parameters of unconditional gamma distribu-
tion as well as the observed and expected counts.
In order to evaluate the conditional gamma distri-
bution for each observed count, one needs to first
estimate the parameters of the unconditional
gamma mixture. First, one would consider the mar-
ginal distributions of each Nj;, which are negative
binomial mixtures. The distributions are derived as
a mixture of Poisson distributions, where the Pois-
son mean has a gamma distribution. Here, intu-
itively, one may view that the relationship between
Poisson and negative binomial distribution is anal-
ogous to the relationship between the familiar nor-
mal distribution and t-distribution. The likelihood
function, which is given by (equation 11):

L(6) = IT;; {P(Nj; 00,81, Bjy) +

(1-P)f (Njj;09,B2,Ej)}
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is then used to determine the maximum likelihood
estimate of the parameters of the gamma mixture.
By maximising this function we are essentially
finding which values of the five parameters (o,
B1, 0, B2, P) would maximise the probability of
obtaining the entire observed negative binomial
cell counts (figure 11).The initial parameter values
chosen to start the MLE (figure 12) process for the
gamma distribution are arbitrary and become less
important, since the maximum likelihood esti-
mates (figure 12) weighs the observed data
heavily. A ‘weak rationale’ was used to specify the
initial parameters of the gamma mixture dis-
tributions. It was assumed that most (2 of 3) drug-
event combinations have values that cluster around
the null hypothesis value of A = 1 (i.e. not a signal)
and suggests a gamma distribution for this compo-
nent. The remaining one-third of cells are assumed
to the site of drug-event dependencies and are
hypothesised to have a gamma with a higher mean
and variance.['l]

Once the parameters of the unconditional
gamma mixture are determined, the conditional
gamma mixture for each observed cell can be eval-
uated by updating the unconditional parameters
with the observed and expected data for each cell
individually. By calculating the expectation value
of log A instead of A, we get a statistic that is the
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Bayesian equivalent of logoRR, namely (equation
12):

EBlog,;; = E[log, (A;) N1 =
E[log(}) [N = Ny]/log(2)

By calculating the expectation value of the log-
transformed data we affect our ‘shrinkage’, since
imprecise estimates of A with wide interval esti-
mates and very small lower bounds from such cells
have the lower bound ‘shrunk’ less by log transfor-
mation than the larger upper bounds of these cells
(log transformation reduces the variance of the
data). This lowers the estimates of cells with low
expected cell counts.

A tabular summary of the database scan is cre-
ated that ranks the cells on all three scores. Work-
ing with a commercial vendor, the FDA has devel-
oped visual graphical displays using the software
CrossGraphs (Belmont Research Inc. 1996) to plot
and graph empirical Bayes scores including col-
our-coded spatial maps of signal scores, finger-
prints, chromatographic maps, timeline summa-
ries, and paired female-male signal scores (figures
13 and 14). This system includes interactive drill-
down capability.l'!]

In an analysis of the FDA spontaneous reporting
system database the technique was applied to about
1.2 million reports listing approximately 4.9 mil-
lion events. The data were slightly compressed by
subsuming trade name drugs under generic drug
codes and limiting the analysis to events listed in
at least 100 reports.[!1]

Sixty-five combinations were ranked in the top
1000 combinations by all three criteria (RR, logP
[rank], and EBGM [rank]) indicative of the varying
performance characteristics of the three criteria. It
is useful to compare the characteristics of the drug-
adverse event combinations uniquely chosen by
different criteria. All cells chosen by only the RR
criterion had N <2 and E <2. Highly ranked cells
by EBGM criteria alone tended to be combinations
with moderate N and small, but ‘not tiny’ expected
cell counts (0.28 < E < 0.63). Highly ranked cell

© Adis International Limited. All rights reserved.

by logP criteria alone tended to have huge ob-
served counts N, large expected cell counts (E >
193) and relatively low N/E ratios. Cells with RRs
that differ by multiples of hundreds but with vary-
ing levels of variance based on cell counts can have
the same EBGM due to shrinkage.!'!]

Screening is not limited to drug-adverse event
combinations. The strength or ranking of signals
has been coupled with logistic regression analysis
with predictor variables such as dose and gender.
Dependencies between drugs can be used to look
for signals of interactions causing a given adverse
event.[301

The FDA has been attempting to validate the
EBS model and its assumptions, noting the need
for goodness of fit plus signals that are truly infor-
mative of drug-adverse event concerns.[!!1 While
comprehensive data have not been published,
drug-adverse event associations contained in pre-
scribing information and/or identified during pre-
vious analysis of the database were evaluated.
These known associations were highlighted as
‘higher than expected’ alerts, and sometimes the
alert appeared earlier in chronological time al-
though precise details were not given.l'?! The au-
thors go on to say ‘earlier identification of a known
association is a confirmation of the model’s perfor-
mance’. However it remains unanswered whether
individual case causality assessment would have
established a strong enough link to conclude a
causal association was present or reasonably
likely. Events known not to be a problem with
some drugs or drug classes suggest that false-
negative signals are not being detected. Details of
the validation process that were not provided as-
sume greater importance given the dynamic nature
of the database.

An interesting corollary of this work is the find-
ing that within selected drug classes a reasonable
correlation (overall correlation >0.63) was ob-
served between the total number of reports naming
a drug and independent estimates of drug utilisa-
tion obtained from external data sources. The total
number of reports with a given drug associated
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with a signal score less than 1 may be a surrogate
for adjusting relative drug exposures.[28.29]

EBS is publicly available on the Internet at ftp://
ftp.research.att.com/dist/gps. The site includes the

gamma Poisson shrinker algorithm program with
auser interface, a copy of the paper ‘Bayesian data
mining in large frequency tables, with an appli-
cation to the spontaneous reporting system’ by

In discussing Bayesian inference we learned that in probability you usually know the parameters of the distribution and try to
predict the outcomes. Likelihood is the inverse of this in that we are given observed data and try to figure out which parameter
value would be most likely to generate the observed data. Essentially it is the probability density function for the observed data
as a function of parameter values. The maximum likelihood estimate (MLE) is the parameter value(s) that make the observed
data most likely which is the peak of the likelihood function.

This is not the same as probability. A probability distribution returns the probability of observing a given sample of data for a
given sample size and parameter. The cumulative probability distribution must sum or integrate to provide a total probability of
one. The likelihood returns the probability that different parameter values would produce a single observed sample of data. It
does not have to add up to one since there are infinitely many parameter values that could, with varying likelihood, produce the
observed sample.

To show how this works we will use an absurdly simple example where we already know the answer and for which we would
never have to use the technique to begin with. A simple coin flip experiment can be described as a binomial distribution with
parameters p = (probability of obtaining a head) and n = (total number of flips).

[n!/n!(n-h)!]ph(1-p)n-h

Let's say that out of 100 flips the total number of heads (h) is 56. It should be obvious that we already have the answer to the
question as to what the MLE is — it is p=0.56! But let's see how likely it would be for various values of p to produce the
observed data (56 heads and 44 tails).

L (p = 0.48|data) = 100!/56!441 (0.48)56 (0.52)% = 0.0222
L (p = 0.50|data) = 100!/56!44! (0.50)56 (0.50)% = 0.0389
L (p = 0.52|data) = 100!/56!44! (0.52)56 (0.48)% = 0.0581
L (p = 0.54|data) = 100!/56!441 (0.54)56 (0.46)* = 0.0739
L (p = 0.56|data) = 100!/56!44! (0.56)56 (0.44)% = 0.0801
L (p = 0.58|data) = 100!/56!44! (0.58)%6 (0.42)% = 0.0738
L (p = 0.60|data) = 100!/56!441 (0.60)56 (0.40)* = 0.0576
L (p = 0.62|data) = 100!/56!44! (0.62)6 (0.38)% = 0.0378

The MLE is 0.56 since this value of the parameter makes the observed data most likely. Notice that you can choose to evaluate
as many values of the parameter as you like. The number will be determined in part by the minimum 'tolerance' that you are
willing to be off by.

With more complex models and parameters, including parameters that are uncertain and have their own probability distribution,
it becomes very hard to estimate the MLE. Analytical methods can be used which graph the likelihood as a line or surface and
then look for the first two derivatives of the curve to look for the maxima of the curve or surface. If the number of parameters
increases (increasing dimensions) the '‘parameter space' rapidly enlarges. Computers are well suited to performing numerical
MLE in such cases.

How does this relate to Empirical Bayes Screening? We have our initial estimated, subjective parameters for the gamma
mixture and we have our likelihood that is the mixture of negative binomials representing the distribution of actual observed
values. We 'pool' these distributions and determine which expression for the parameters would be most likely to produce the
sample of observed negative binomial counts (determine the MLE). This maximisation involves a search in five-dimensional
parameter space

{6: a1,02, B1, B2, P} for the vector that maximises the likelihood as evidenced by the first and second derivatives of the function
being zero. The likelihood is

L(8) =TI {P f (N oy, By, Ey) + (1-P) f (Ny; oz, Bo, )}
This involves millions of calculations. The computational procedures required for these calculations are based on the Newton-

Raphson method. This is an old calculus-based technique that was devised to find the roots of an equation (e.g. the values of
the independent variable (e.g. x) for which the value of the function (e.g. f(x)) equals zero.

To summarise, maximum likelihood estimation involves the following four steps: (i) obtain your data; (ii) specify a model;
(iii) compute the likelihoods and; (iv) find the value of the parameters that maximises the likelihood.

Fig. 12. Maximum likelihood estimates.
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Fig. 13. Spatial maps of signal scores for the most frequently reported events (rows) and drugs (columns) in the database by intensity
of the empirical Bayes signal score with the strength of the signals represented by differential shading as displayed in the key above.

William DuMouchel, which describes the theory
of GPS, and an accessible help system with in-
structions.

7. Discussion of PRRs, BCPNN and EBS

PRRs, BCPNN and EBS are currently the most
widely studied and used methods of automated sig-
nal detection. All are numerator-based and there-
fore ‘self-contained’ but the underlying models
and computational intensity vary. The question
naturally arises as to which is the preferred method
for a given database. Many performance charac-
teristics must be considered, including the total
number of signals detected and the proportion that
are meaningful.

Any institution contemplating automated signal
detection needs to give serious consideration to the
resource requirements for evaluating detected sig-
nals. A crucial performance parameter is therefore
the overall volume of signals detected, since this
will determine the resource requirements neces-

© Adis International Limited. All rights reserved.

sary for the timely and effective evaluation of sig-
nals detected. Even if the rate of false alarms is not
higher than with traditional signal detection meth-
odology, the absolute number of signals and there-
fore the absolute number of false alarms is likely
to increase. Detecting an extremely large volume
of signals poses a potential problem from the per-
spective of triage.

Direct comparisons of the detected signal vol-
ume are somewhat imprecise, since these methods
are primarily applied to different databases (PRRs/
ADROIT/UK Yellow Card database, BCPNN/
WHO database, and EBS/FDA Adverse Event
Reporting System [AERS] database). However,
published data give some indication of the relative
signal volume.

As mentioned above (section 5), recently pub-
lished data from the MCA cited a total of approx-
imately 480 signals detected (10% of preferred
terms) over a time interval of 2 years. However,
these 481 signals were detected using only the top
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15 drugs in terms of number of reports. Since the ume because of the lack of a shrinkage procedure
UK Yellow Card System contains over 400 000 built into the model. Therefore, to reduce the vol-
reports describing 600 000 reactions, the number ~ ume of potential signals that are evaluated, the
of signals detected from the entire database would MCA employs triage criteria including the
be substantially higher.[8l Without additional sig-  strength of the signal, the novelty of the event, its
nal criteria PRRs may detect a higher signal vol- clinical importance (severity and seriousness) and

Rash macular papular 67 194 259 277 299 310 314 321 329 341 344 351 353 359 360 367 370 376 381 384 393 398 409 417 422 429 433 439 440 440

Urticaria 54 155 203 224 263 279 303 328 336 340 346 350 359 366 372 377 389 399 407 419 430 444 457 466 479 491 503 511 522 522
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Angioedema 11 16 20 23 23 24 25 27 28 29 29 29 29 29 29 31
Anaphylaxis 31 53 63 94 119136 150 156 165 165 181 183 184 190 198 200 202 212 223 233 241 245 248 258 266 272 278 284 284
Rash 130 182 203 234 253 279 297 312 320 331 333 346 356 367 380 388
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10 13 13 14 18 18 19 19 19 19 20 20 25 25 25 31 36 38 40 42 44 45 45 45 46 48 48 48 48
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Hyperventilation
Haemorrhagic injection site
Pain injection site
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6 6 8 8 8 9 9 11 13 14 14 15 15 16 16 17 18 19 19 19 19
47 50 50 51 51 54 54 63 71 73 80 83 84 88 93 95 101103 106 106
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Hypersensitivity injection site 14 18 20 21
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Fig. 14. Time line summary: cumulative reports and number of reports according to the year when the first signal was detected for
penicillin. NEC = not elsewhere classified; NOS = not otherwise stated.
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its preventability. These triage criteria are referred
to by the acronym ‘SNIP’ (strong, new, important
and potentially preventable).!8!

The problem of signal volume and potential so-
lutions was recently highlighted for the BCPNN.
The UMC reported that the BCPNN was detecting
more than 2000 potential signals per quarter. To
address this, the UMC has implemented additional
signal selection algorithms to be used in parallel
with the BCPNN to filter down the number of drug-
adverse event combinations that are triaged as po-
tentially important. Four triage algorithms are de-
signed to focus on serious and new events, events
with a rapid reporting increase, events that are clin-
ically of special interest because they are typically
drug related (e.g. rhabdomyolysis, agranulocytosis
and Stevens-Johnson syndrome) and ‘international
signals’ that are reported from more than one
country.30

Data will soon be published on signal volume
detected by EBS applied to the FDA Adverse
Event Reporting System (1997-present) and Spon-
taneous Reporting System (1968—1997) databases.
Scanning the total databases that cover a time in-
terval of 34 years, approximately 3.5% of almost
1.2 million drug-adverse event combinations were
flagged as potential signals equal to approximately
40 000 signals in 34 years of data. This comes out
to less than 2000 signals per year of data.!3!! Unlike
PRRs and BCPNN, EBS stratifies by key variables
such as age, gender and time and is therefore less
prone to false positive signals resulting from Simp-
son’s paradox (confounding).

There are no published head-to-head compari-
sons of PRRs versus BCPNN versus EBS, but data
are starting to appear comparing PRRs and EBS.
PRRs are easy to understand and far less compu-
tationally intensive than BCPNN and EBS. A phar-
maceutical company spontaneous reporting data-
base containing over half a million events was used
to compare PRRs and EBS.3?] The database was
scanned by both methods. The threshold criteria
for PRRs are unclear, but it appears that a signal
threshold consisted of a PRR >2, chi-square p <

© Adis International Limited. All rights reserved.

0.05, and a minimum of two reports of the drug-
event combination. Drug-event combinations were
ranked and the ranked lists of the two methods
were compared. Further evaluation of each method
consisted of applying logistic regression to inves-
tigating possible dose-response relationships and
drug-drug interactions. The investigators found
PRRs both easy to implement and accessible to
drug safety physicians and has become their pre-
ferred method of signal detection. The EBS was
equal to PRRs in generating large posterior esti-
mates for known drug reactions. For events with
relatively high observed frequencies, both meth-
ods generated comparable event rankings. The
EBS was ‘better’ for ranking low frequency events
but at the expense of extra programming, sophisti-
cated software and knowledge of Bayesian meth-
ods.32 The criteria for deciding which ranking was
better were not described in detail. It remains to be
determined how the automated methods compare
with certain intensive nonautomated methods,
such as a drug-specific reporting frequency cut-off
(e.g. a potential signal is evaluated if the event ex-
ceeds a threshold, say 2% of all reports with the
drug). It would be interesting to see if all signals
detected by automated methods involved events
that exceeded such a threshold for each drug.

Published data on the utility of PRRs, EBS and
BCPNN have been retrospective in nature. This is
a critical gap, since legitimate signals may be de-
tected that remain unconfirmed by individual case
causality assessment until long after they first ap-
peared as a signal. Moreover the retrospective na-
ture of these investigations could have introduced
bias in the conduct and/or analysis of the data
mining.

In almost all instances these methods of auto-
mated signal detection have been applied to
postapproval safety databases that are global in ex-
tent and contain hundreds of thousands to millions
of adverse event reports. The smallest database that
could be identified to which automated signal de-
tection was studied is The Netherlands Pharma-
covigilance Foundation, containing 39 790 ad-
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verse event reports involving 17 330 different
drug-adverse event combinations. This database
was used to examine the level of concordance be-
tween various estimates of disproportionality (e.g.
PRRs, RORs) with that derived from the IC in the
BCPNN. Among the drug-event combinations
with at least four reports there was a high level of
concordance in terms of the drug-event combina-
tions highlighted as potential signals. Among
drug-adverse event combinations with fewer than
four reports the other methods tended to highlight
more drug-adverse event combinations. As the
number of reports per drug-adverse event combi-
nation increased the concordance between the var-
ious measures was found to increase. However, the
differential performance of PRRs, EBS and
BCPNN in databases that differ qualitatively or
quantitatively is incompletely characterised.33]

At present, these three methods appear compa-
rable in performance. PRR is the easiest to under-
stand and implement. It may not be as predictive
as the Bayesian methods for low-frequency events,
since the Bayesian models have a shrinkage proce-
dure built in that lowers the signal score for drug-
adverse event associations with less statistical sup-
port (low frequency of reports). It is also the only
one of the three with published data on its ability
to detect new signals leading to regulatory inter-
ventions. The positive predictive value, however,
was quite low. The BCPNN seems to detect the
largest volume of potential signals from the WHO
database, which is an important resource consider-
ation. EBS is publicly available on the Internet and
may have more built-in flexibility, since relative
rankings rather than absolute signal scores are
emphasised. The numerous inherent confounders
and limitations cannot be eliminated by any math-
ematical model. The need for expert clinical re-
viewers will probably increase because of the in-
creased potential signal volume that these methods
may detect.
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8. Summary and Conclusions

Those who choose a career in pharmacovigil-
ance know how the complex data presented to us
are a source of both fascination and frustration.
The fascination is the infinite number of permuta-
tions and combinations that are a rich source of
hypothesis. The frustration is to try to overcome
limitations in the data so that we can use our intel-
lectual curiosity about this complex information to
serve the health of the public. Although there have
been previous attempts to apply statistical method-
ology to the analysis of pharmacovigilance data,
these techniques have limited or no support in rou-
tine signal detection.

Pharmacovigilance is evolving into a more
quantitative science in that quantitative statistical
techniques are being applied to ‘dirty’ postmarket-
ing databases traditionally considered resistant to
such attacks. Although various techniques and
data sources have been used, most activity cur-
rently centres on two quantitative, numerator-
based methods of signal detection: PRRs and
Bayesian data mining. Within Bayesian data min-
ing are two different but related techniques: EBS
and the BCPNN.

While data on the comparative performance
characteristics of the various numerator-based
methods are limited, PRRs and Bayesian data min-
ing appear comparable, with EBS having a possi-
ble advantage with drug-event combinations in-
volving very small numbers. Another potential
advantage of EBS is that it does not have stand-
alone threshold criteria for signalling. It uses the
RR, log P;; and EBGM;; to rank drug-event depend-
encies. The BCPNN provides a stand-alone thresh-
old for signalling that applies to any cells meeting
this combination regardless of ranking. The EBS
may therefore provide more flexibility in estab-
lishing threshold criteria that can be an important
consideration given the high number of false
alarms and associated cost in resources to evaluate
all these false alarms. PRRs may provide most of
the power of EBS without the software, hardware
and programming requirements.
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Comparative performance criteria should be
precise and consistent. The positive predictive
value can be defined in various ways. The positive
predictive value of a signal of an unlabelled event
is probably more meaningful than the positive pre-
dictive value of any event detected by these methods.

Any institution contemplating automated signal
detection needs to give serious consideration to the
resource requirements for evaluating signals de-
tected. Even if the rate of false alarms is not higher
than traditional signal detection methodology, the
absolute number of signals and therefore the abso-
lute number of false alarms is likely to increase.
Detecting an extremely large volume of signals
poses a potential problem from the perspective of
triage. The problem of signal volume and potential
solutions was recently highlighted for the BCPNN
as described in section 7.130]

EBS provides three different measures. Using
combinations of signal scores could mitigate the
problem of false positives. Other possible solutions
as described in section 7 are to limit analysis to
cells with a minimum cell count or adverse medical
events that are characteristic of drug-related phe-
nomena. Examining the stability or evolution of
the signal over time might improve the perfor-
mance characteristics.

It is crucial to remember that automated meth-
ods do not replace the need for expert clinical case
review and interpretation by drug safety profes-
sionals experienced in the nuances of pharma-
coepidemiology and clinical medicine. An example
is the recent application of the BCPNN in which a
signal was detected of possible heart-muscle dis-
order associated with antipsychotics, especially
clozapine. The automated signalling procedure
does not currently take into account numerous con-
founding factors, such as the fact that in many
countries clozapine is used for schizophrenia un-
responsive to three other antipsychotics of differ-
ent chemical classes and that cardiac muscle
changes with clozapine could therefore represent a
cumulative effect of previous antipsychotic drug
exposure.34]
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Additional pitfalls can occur, which are related
to the size and coding procedures of the database
being screened. With all three methods, strong sig-
nals with one drug can obscure signals of another
drug in the database. With PRRs a strong signal of
an event with a given drug inflates the denominator
of the PRRs with that drug, thereby lowering the
signal score. Similar considerations indicate that a
strong signal with a drug or class of drugs reduces
the PRR for another drug or drug class.

With PRRs, BCPNN and EBS a signal may be
diluted or enhanced in databases that differ quan-
titatively or qualitatively. A hypothetical example
may clarify this concept. Consider a hypothetical
database of a pharmaceutical company that does
not market ACE inhibitors. Let us imagine that we
apply EBS to this company database as well as to
a global regulatory database that enters drugs not
only from that company but from all others as well,
including makers of ACE inhibitors. In EBS the
expected cell counts for a given drug-adverse event
combination are directly related to the proportional
representation of that adverse event in the overall
database. Therefore, for some events that are
strongly associated with a certain class of drugs,
such as ACE inhibitor-induced cough, the ex-
pected cell counts for that drug-adverse event com-
bination may be higher in the global regulatory
database containing reports with ACE inhibitors.
Given that all reports from the hypothetical phar-
maceutical company were submitted to the regula-
tory authority, reports of cough with drugs manu-
factured by the pharmaceutical company will be
associated with a stronger signal score because the
expected cell count associated with cough in the
company’s database is smaller. Such an effect
could be defined by the temporal evolution of the
signal score, since the proportional representation
of cough in the regulatory database should de-
crease over time. However it would be difficult to
predict the effect of compositional differences be-
tween databases on a given signal score since the
expected cell counts and signal scores would also
be a function of the overall size of the database.
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The characteristics of the dictionary used can
also have profound implications, since a coding
variability of a given event could result in dilution
of a signal. Coding with effective dictionaries with
limited synonymous but separate preferred or
higher-level terms would promote more effective
automated screening.

As Bayesian data-mining methods are being
used more widely and refined, they are being ex-
tended to the detection of higher-order multi-item
associations. This will allow, for example, the de-
tection of signals involving constellations of
events or the detection of drug interactions in the
form of drug-drug-adverse event associations. Re-
cent work with the BCPNN has showed that pat-
terns of adverse events associated with a drug that
are never reported together on a single adverse
event report can be inferred via pattern recognition
of interdependencies.[33 EBS has already been ap-
plied to the detection of multi-item associations in
other disciplines 39! and is currently being ex-
plored by the US Centers for Disease Control and
Prevention to detect signals of vaccine-related
medical syndromes in the Vaccine Adverse Event
Reporting System (VAERS) database. This pro-
gram is known as Multi-item Gamma Poisson
Shrinker (MGPS) and is publicly available for
noncommercial use on the Internet.

The mathematical content of these methods
should not intimidate drug safety professionals
who are not formally trained in statistics. The extra
effort exerted in understanding the theoretical
foundations of these methods is not only intrinsi-
cally gratifying to the intellect but will also arm the
drug safety professional with the knowledge
needed to make informed judgements without be-
ing overawed by the mathematics. The equations
should not obscure the numerous limitations and
biases in the data and the methods, including the
essentially nonclinical nature of the underlying al-
gorithms.

Collaborative interaction between all stake-
holders will promote the establishment of best
practices in signal detection.
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Post-Publication Note

For additional information on recent developments in
signal detection since the writing of this article, we highly
recommend Drug Safety 2002; 25 (6): 379-471, that contains
the proceedings of a meeting held by the Drug Safety Re-
search Unit, Southampton, England, June 25-26, 2001.
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